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I. INTRODUCTION

The �eld of observational cosmology has developed to the degree that it is now possible

to test models of the early universe. The next few years should see a dramatic increase in

the variety and accuracy of cosmological observations. In this paper, we discuss how mea-

surements of the temperature anisotropies in the cosmic microwave background (CMB)

at the accuracy expected to result from two planned satellite missions, the Microwave

Anisotropy Probe (MAP) [1] and PLANCK (formerly COBRAS/SAMBA) [2], will allow

us to discriminate among ination models.

The basic idea of ination is that there was an epoch early in the history of the

universe when potential, or vacuum, energy dominated other forms of energy density

such as matter or radiation. During the vacuum-dominated era the scale factor grew

quasi-exponentially while the Hubble radius remained roughly constant. Since in cosmic

expansion length scales increase with the scale factor, scales that were once smaller than

the Hubble radius grew during ination to become larger than the Hubble radius. Once

a length scale becomes larger than the Hubble radius, any perturbation on that scale

becomes frozen. Once ination ends and the universe is radiation or matter dominated,

the Hubble radius increases faster than the scale factor and the length scale reenters the

Hubble radius with the signature of events during ination imprinted upon it.

By observing uctuations in the CMB or uctuations in the distribution of matter,

we can observe the signature of quantum uctuations during ination. Since di�erent

potentials lead to di�erent signatures, we can see which ination models are consistent

with CMB uctuations1. A problem with this e�ort [7,8] of trying to extract information

about the inaton potential from the CMB is that the anisotropies depend not only on

1We are assuming that ination is responsible for the anisotropies. There has recently been a large
amount of work [3,4,5,6] trying to understand how easy it will be to distinguish anisotropies produced
by ination from those produced by other mechanisms. We do not enter into this debate here.
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the inationary parameters, but also on a variety of other unknown cosmological param-

eters [9,10,11]. Among these are the baryon density 
B, the Hubble constant H0, and

the cosmological constant �. Here, we �x the cosmological constant to zero. Allowing

� and/or other parameters to vary would loosen the constraints on inationary models.

On the other hand, we have not included information that will be gained from measure-

ments of CMB polarization or from ongoing ground-based and balloon measurements of

temperature anisotropies. So we expect our �nal constraints to be realistic indicators of

what we will know in ten years.

II. INFLATION DYNAMICS AND CMB FLUCTUATIONS

In this paper we consider only ination models with \normal" gravity (i.e., general

relativity) and a single scalar �eld (the inaton). Although this might seem like a small

region in the space of possible ination models, it does include some of the most studied

models, including scalar �eld models with polynomial potentials (�n), pseudo Nambu-

Goldstone potentials (natural ination), exponential potentials (dilaton-like models), or

Coleman-Weinberg potentials (\new" ination). In Section IV we will describe the indi-

vidual models we test.

In addition to the models we study, many other types of ination models can be

studied by considering an equivalent one-�eld, slow-roll model. Two familiar examples

are the Starobinski R2 model and versions of extended ination. Both these models

have non-minimal gravitational sectors, with an R2 term in the action of the Starobinski

model, and a Brans-Dicke coupling of R to a scalar �eld in extended ination. Although

at �rst sight these do not appear to be included in the class of models we study, after a

suitable conformal transformation both models can be expressed as single-�eld, slow-roll
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ination models. It would be interesting to see if models with more than one inaton

�eld can be similarly rewritten in terms of a single e�ective �eld. However, we do not

pursue this possibility here.

A. Perturbation amplitudes and spectral indices from ination

Our goal is to start with a scalar �eld potential and calculate the scalar and tensor

perturbation amplitudes and spectral indices. We make three basic approximations. The

�rst approximation is a dual expansion of the metric about a Friedmann{Robertson{

Walker background, g��(x; t) = gFRW�� (t) + h��(x; t), and an expansion of the inaton

�eld about a homogeneous, isotropic background, �(x; t) = �0(t) + ��(x; t). Since we

know that the density perturbations are of order 10�5, this is presumably a very good

approximation.

The metric perturbations produced by ination can be described in terms of two

functions, which we call AS(k) and AT (k). The �rst function, AS(k), describes scalar

metric perturbations. These are the perturbations that couple to T�� and are associated

with structure formation. The second function, AT (k), describes tensor perturbations.

The tensor perturbations do not couple to T�� and are not associated with structure

formation. The tensor perturbations can be visualized as gravity waves. The distribution

of cosmic radiation depends on the full structure of the metric, so both AS(k) and AT (k)

contribute to CMB anisotropies.

The perturbation amplitudes AS(k) and AT (k) are the values the quantities have when

the wavenumber k is equal to the Hubble radius after ination. The scalar amplitude is

related to the density perturbation (��=�)k and the power spectrum, PS(k) / k�3(��=�)2k,

through a transfer function T (k) [12]. We note that the normalization of AS and AT is

somewhat arbitrary, although the choice of normalization will a�ect how we relate the
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parameters to directly observable quantities; we follow the convention of Ref. [13]. There

AS(k) is normalized to be equal to the density perturbation at Hubble radius crossing:

AS(k = aH) = (��=�)k=aH . The normalization of AT (k) was chosen such that to lowest

order A2
T = �A2

S, where � is de�ned below.

The favored formalism for the calculation of perturbations uses the Hamilton-Jacobi

formulation of scalar �eld dynamics during ination [14,15,16], where the expansion rate,

H, parameterized by the value of the scalar �eld, �, is viewed as the fundamental dynam-

ical variable. The most accurate calculations of the perturbation spectra are in terms of

H and its derivatives. The derivatives of H can be expressed in terms of dimensionless

slow-roll parameters, the �rst two of which are de�ned as2

�(�) � m2
Pl

4�

 
H 0(�)

H(�)

!2
; �(�) � m2

Pl

4�

H 00(�)

H(�)
: (2.1)

The second approximation we make involves the assumption that the slow-roll parameters

are small in comparison to unity. Note that � is a direct measure of the equation of state

of the scalar �eld matter, p = �� (1� 2�=3), where p is the pressure and � is the energy

density. Since ination can be de�ned to be a period of accelerated expansion, where

�
�a

a

�
= H2 (1� �) > 0; (2.2)

the end of ination can be expressed exactly as � = 1.

In the Hamiltonian-Jacobi formulation of the dynamics, the expansion rate H(�) is

the fundamental cosmological parameter. However, in comparison with particle physics

models, the inaton potential V (�) is fundamental. Thus, we have to express the slow-roll

parameters in terms of the inaton potential. This was done in Ref. [17], with result

�(�) =
m2

P l

16�

 
V 0(�)

V (�)

!2
; �(�) = �m

2
P l

16�

 
V 0(�)

V (�)

!2
+
m2

P l

8�

 
V 00(�)

V (�)

!
: (2.3)

2The de�nition of the slow-roll parameters vary; we follow the conventions of Ref. [13].
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The value of the scalar �eld can be used to specify a length scale crossing the Hubble

radius during ination. This is most easily accomplished by considering the number of

e-foldings of the scale factor in the evolution from a value of � until the end of ination:

N(�; �END) �
Z tEND

t
H(t) dt = � 4�

m2
P l

Z �END

�

H(�)

H 0(�)
d� ; (2.4)

where the subscript `END' signi�es that the quantity is to be evaluated at the end of

ination. The choice of sign depends upon the sign of _�, i.e., whether j�ENDj is greater

or less than j�j. It can be �xed by requiring the right-hand side of the equation to be

positive.

The comoving scale k crosses the Hubble radius during ination N(k) e-foldings from

the end of ination, where N(k) is given by [13]

N(k) = 62� ln
k

a0H0

� ln
1016GeV

V
1=4
k

+ ln
V
1=4
k

V
1=4
e

� 1

3
ln
Ve

1=4

�
1=4
RH

: (2.5)

The subscript `0' indicates the present value of the quantity and �RH is the energy density

after reheating. For instance, a length scale corresponding to 200h�1 Mpc (i.e., k =

2�=200h�1Mpc) roughly corresponds toN(�; �e) ' 50. Therefore the value of the inaton

�eld when a comoving scale of 200h�1 Mpc crosses the Hubble radius during ination is

found by �nding �END and solving Eq. (2.4) with N(�; �END) = 50.

To lowest order in the slow-roll parameters, the scalar and tensor perturbation spectra

are

AS(k) '
2

5
p
�

1q
�(�)

H(�)

mP l

; AT (k) '
2

5
p
�

H(�)

mP l

: (2.6)

Note that the left hand side is expressed in terms of wavenumber k. The relationship

between � and k was discussed above.

It is useful to describe the spectra in terms of spectral indices n � d lnA2
S(k)=d ln k

and nT � d lnA2
T (k)=d ln k. Again to lowest order in the slow-roll parameters,

n(k)� 1 ' �4�(�) + 2�(�) ; nT (k) ' �2�(�) ; (2.7)

5



where once again it is necessary to use the relationship between k and �. A third

approximation we make is that over the range of length scales probed by CMB we can

take the spectral indices as constant. In other words we assume that although the slow-

roll parameters change in ination, they are roughly constant during the epoch where

scales of interest for the CMB cross the Hubble radius. This implies that the scalar and

tensor spectra can be written as

AS(k) = AS(k0)

 
k

k0

!1�n
; AT (k) = AT (k0)

 
k

k0

!nT
; (2.8)

where n and nT are constant and k0 is the wavenumber corresponding to some length

scale probed by CMB experiments. This allows the two functions, AS(k) and AT (k), to

be parameterized in terms of four constants, fAS(k0); AT (k0); n; nTg.

If the perturbations arise from slow-roll ination, then not all of the four parameters

are independent, but there is a relation, known as the consistency relation, which reduces

the number to three. To lowest order in slow-roll parameters, the consistency relation can

be found from Eqs. (2.6) and (2.7): nT = �2AT (k0)
2=AS(k0)

2. So within the framework

of the approximations discussed above, the scalar and tensor perturbation spectra can

be characterized by three parameters, fAS(k0); AT (k0); ng.

B. Parameterization of the CMB perturbation spectrum

To calculate CMB spectra, one must solve the perturbed Einstein-Boltzmann equa-

tions which describe how the di�erent components of the universe (photons, neutrinos,

electrons, protons, hydrogen, and dark matter) couple to each other and to gravity. The

perturbation spectra produced by ination are taken as initial conditions for these equa-

tions. The �nal output is the full spectrum of CMB perturbations. In Gaussian theories,

such as ination, these are completely characterized by the two-point correlation function.
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If the temperature pattern on the sky is expanded in spherical harmonics,

�T (�; �)

T0
=

1X
l=0

lX
m=�l

almYlm(�; �) (2.9)

where T0 = 2:726 is the average temperature of the CMB today, then ination predicts

that each alm will be Gaussian distributed with mean zero and variance

Cl � hjalmj2i: (2.10)

The Cl's can be both measured experimentally and predicted theoretically.

For a given set of inationary parameters and cosmological parameters, one can deter-

mine the full spectrum of Cl's by solving the Einstein-Boltzmann equations. Therefore,

instead of specifying thousands of Cl's, it is more convenient to characterize a given spec-

trum by the parameters which determine it. These are the three parameters of the initial

perturbation spectra, fAS(k0); AT (k0); ng plus the unknown cosmological parameters,

which we take to be 
B and H0. It has become conventional to re-express the amplitudes

AS(k0) and AT (k0) in terms of two more physical quantities related to C2. Speci�cally,

we introduce two parameters

Qrms�PS � T0

s
5C2

4�
and r � Ctensor

2

Cscalar
2

: (2.11)

Thus, any given set of Cl's that we consider is a function of �ve parameters, which we

take to be Qrms�PS; r; n; 
B; and H0.

C. Connecting slow-roll parameters and CMB parameters

The natural parameters in \model space" are H, �, and �, which correspond to the

expansion rate during ination, and the �rst and second derivative of the expansion rate.

Since most ination models have an arbitrary adjustable parameter corresponding to the

normalization, information on the magnitude ofH is not as valuable as information about
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the way H changes. (Equivalently, no theory predicts the value of Qrms�PS.) So we �nd

that information about � and � gleaned from the harvest of information expected from

the next generation of CMB satellites will be the best discriminant of ination models.

Here we relate � and � to the observationally relevant parameters n and r.

Equation 2.7 can be used to relate n to � and �. The only ambiguity is the value

of � at which to evaluate � and �. The most reasonable value of � is the one which

corresponds to scales probed by the CMB. Thus, we de�ne �CMB to be the value of �

associated with N(�CMB; �END) = 50. (This is sometimes called �50 or ��.) By using Eq.

(2.4), �CMB is found from

N(�CMB; �END) = 50 =

s
4�

m2
P l

Z �END

�CMB

1q
�(�0)

d�0 : (2.12)

Then n is given by

n = 1� 4�CMB + 2�CMB (2.13)

where �CMB � �(�CMB) and similarly for �.

While the tensor to scalar ratio r depends on AT (k0)=AS(k0), it also depends on n

somewhat, since C2 coming from both tensors and scalars is actually an integral over the

primordial spectra. Using �ts to these integrals provided in Ref. [18], it is straightforward

to show that, to lowest order in slow-roll,

r = 13:7�CMB: (2.14)

We now have all the ingredients for a recipe to compare ination model predictions

to CMB information. The steps are:

1. From V (�), calculate �(�) and �(�) using Eq. (2.3).

2. Calculate �END by �(�END) = 1.
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3. Find �CMB using Eq. (2.12).

4. From �CMB and �CMB calculate n from Eq. (2.13) and r from Eq. (2.14), which can

be compared directly to CMB temperature anisotropy data.

III. SOME ONE-FIELD, SLOW-ROLL INFLATION MODELS

In this section, we look at several generic inationary models. The models we con-

sider can be grouped into three general classes, \large-�eld," \small-�eld," and \hybrid."

Large-�eld models are characterized by so-called chaotic initial conditions, in which the

inaton �eld is displaced far from its minimum, typically to values � � mP l, and rolls

toward a minimum at the origin. Examples A and E below are large-�eld models. Small-

�eld models are of the form that would be expected as a result of spontaneous symmetry

breaking, with a �eld initially near the origin and rolling toward a minimum at h�i 6= 0.

In this case, ination occurs when the �eld is small relative to its expectation value,

�� h�i. Examples B and C below are small-�eld models.

In order to avoid cumbersome notation we will assume that � is positive. Clearly if

the potential is an even function of � then the sign of � is irrelevant, while if the potential

is an odd function of �, then �V (��) is equivalent to V (�).

The large-�eld and small-�eld cases occupy very di�erent regions in the space of ob-

servable parameters, and can be formally distinguished by the curvature of the potential

in the region where ination is taking place: for the large �eld models, V 00 (�) > 0, and

for the small �eld models, V 00 (�) < 0. In addition, we consider a �fth model (D) that

sits on the boundary between the small �eld and large �eld cases, which is the case of a

linear potential V 00 (�) = 0.
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A third general class of models, occupying a distinct region of parameter space, is

\hybrid" ination [19,20,21], which is characterized by a �eld evolving toward a minimum

of the potential with a nonzero vacuum energy. Hybrid models generally involve more

than one scalar �eld, but can be treated during the inationary epoch as single-�eld

ination, with � small and V 00 (�) > 0. Hybrid ination is the only class of models which

predicts a \blue" spectrum, n > 1. Case F below is a generic hybrid model.

The idea is to be as general as possible, and we calculate the values of observables as

functions of parameters in the models avoiding prejudices about the \reasonableness" of

those parameters. For example, it is possible that particular realizations of these cases in

more detailed contexts may require excessive �ne-tuning or implausibly large mass scales.

However, a completely di�erent model may achieve the same behavior in a more natural

way, and our goal is inclusiveness. This results in particularly broad constraints in the

hybrid case. Hybrid ination models as a class have enough adjustable parameters that it

is possible to generate observables covering broad regions on the (r; n) plane, and model-

dependent physical arguments must be invoked to limit the predictions. Nonetheless,

even with very weak assumptions, there is no overlap in parameter space between hybrid

ination and the other cases considered.

A. \Large-�eld" polynomial potentials: �4(�=�)p, p > 1

The simplest example of the type of ination model we study is a \large-�eld" poly-

nomial potential, V (�) = �4(�=�)p with p > 1. Here � and � are parameters of mass

dimension one; neither one enters in our results. This potential is often used in \chaotic"

inationary models where some region of the universe starts with the scalar �eld dis-

placed from the minimum of the potential (� = 0) by a large amount, typically several

times mP l, and evolves to the minimum. In these models � > �END, so ination occurs
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when the scalar �eld is larger than its eventual minimum.

Following the steps outlined in Section II, we �nd:

1. The slow-roll parameters �(�) and �(�) are given by

�(�) =
p2

16�

m2
P l

�2
; �(�) =

p(p� 2)

16�

m2
P l

�2
:

2. The end of ination occurs when � = �END, given by

�2END
m2

P l

=
p2

16�
:

3. The value of � crossing the Hubble radius 50 e-folds from the end of ination is

�2CMB

m2
P l

=
1

16�
p(p+ 200) :

4. The values of �CMB and �CMB are

�CMB =
p

p+ 200
; �CMB =

p� 2

p+ 200
:

Using these values of �CMB and �CMB, it is easily shown that

n = 1� 2p+ 4

p+ 200
; r ' 13:7

p

p+ 200
:

Note that this is a minimalist model in the sense that ination ends naturally, without

the necessity of invoking another sector of the theory. The results are listed in Table 1.

B. \Small-�eld" polynomial potentials: �4[1� (�=�)p], �� �� mP l and p > 2

The small-�eld polynomial describes what might result if the potential arises from

a phase transition associated with spontaneous symmetry breaking. In this scenario,

the �eld is evolving away from an unstable equilibrium at the origin toward a nonzero
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vacuum expectation value, h�i 6= 0. Near the origin, the potential can be written as a

Taylor expansion,

V (�) = �4

"
1�

 
�

�

!p
+ � � �

#
; (3.1)

where p is the lowest non-vanishing derivative at the origin, and � / h�i. For instance,

the Coleman-Weinberg potential used in the original \new" ination models [22,23] is of

this form with n = 4. This ansatz is quite general, applicable even to potentials which

have a logarithmic divergence in the leading derivative at the origin [24]. In keeping with

the motivation for this model we will assume that �� mP l, so we have the hierarchy of

scales � � � � mP l. The analysis was described in detail in [24]; the relevant results

are given in Table 1 and illustrated in Fig. 1. (The case p = 2 is special, and is discussed

separately below.) Like the polynomial large-�eld models, the parameters r and n are

independent of the fundamental mass scales in the potential,

r ' 0; n = 1� p� 1

25 (p� 2)
: (3.2)

Unlike the large-�eld case, these models have the feature that �CMB, and hence r, is

negligibly small.

C. \Small-�eld" quadratic potentials: �4[1� (�=�)2], �� �

\Natural" ination models [25], in which the potential is usually assumed to have a

cosine potential, can be described by Eq. (3.1) with p = 2 near the origin where ination

occurs.

Potentials dominated by a quadratic term have the property that the small-�eld

assumption �� �, while valid at the time when observable parameters are generated, is
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not consistent all the way to the end of ination, since

� (�) =
1

4�

 
mP l

�

!2
(�=�)2h

1� (�=�)2
i2 : (3.1)

Then �END=� approaches unity for large �, and higher order terms in the potential

cannot be neglected. We adopt the reasonable assumption that � in some direct sense

parameterizes the expectation value of the �eld in the physical vacuum, so that (�END=�)

is of order unity. The precise value of �END is not important, since

�CMB = �END exp

2
4� 25

4�

 
mP l

�

!235 (3.2)

is exponentially small regardless, and the parameters �CMB and �CMB approach the small-

�eld limits

�CMB = � 1

4�

 
mP l

�

!2
; �CMB = j�CMBj exp [�100 j�CMBj] ' 0: (3.3)

Note that since

n = 1 + 2� = 1� 1

2�

 
mP l

�

!2
; (3.4)

if n > 0:9 as suggested by the COBE measurements, then � � mP l is excluded. The

scale-invariant limit is � ! 1, or � ! 0, but it is important to remember that the

small-�eld approximation breaks down in this limit, since �CMB ! �END in Eq. (3.2).

D. Linear potentials: �4(�=�) and �4[1� �=�]

Linear potentials have the property that � = �� = m2
P l=16��

2 is independent of �.

Thus, if ination starts, i.e., if � < 1, it will never end. More exactly, some other physics

must enter to terminate the inationary phase. So we assume that the linear potential

is only valid when scales of interest for the CMB are passing through the Hubble radius.
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Thus the relevant values of � and � are those given above. Like the quadratic potential,

the scale-invariant limit is �!1.

E. Exponential potentials: �4 exp
q
16��2=pm2

P l , p > 0

Exponential potentials lead to an exponential form of the Hubble parameter, which

in turn leads to a power-law time dependence of the scale factor. For potentials of the

form V (�) = �4 exp
q
16��2=pm2

P l, the expansion rate is H / exp
q
4��2=pm2

P l which

gives a / tp. This model is usually called power-law ination, a term we will not use in

order to avoid confusion with models with power-law potentials. Exponential potentials,

while nonrenormalizable, arise quite naturally as the e�ective low-energy description of

degrees of freedom associated with extra spatial dimensions in Kaluza{Klein models, as

well as dilatons and moduli �elds in superstring theories.

This model has the useful property that both � and � are constant and equal: � =

� = p�1. Thus, as in the linear potential case, some other physics must enter in order for

ination to end. With � = � = p�1, we �nd r = 13:7p�1 and n = 1 � 2p�1. The result

n� 1 / r is often incorrectly generalized to all slow-roll models.

F. Hybrid Ination: �4[1 + (�=�)p], � < �

The �nal class of models we consider is \hybrid" ination [19,20,21], in which the

�eld rolls toward a minimum with a nonzero vacuum energy. We take a potential of the

form

V (�) = �4

"
1 +

 
�

�

!p#
; (3.1)

with p � 2. The large-�eld limit of this potential is just the case of chaotic ination

with a polynomial potential, model A. Hybrid ination is the limit of small �eld, � < �,
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where the potential is dominated by the constant term, V ' �4 = const: In the absence

of any other physics, the �eld rolls toward the origin, coming to rest at � = 0 after an

in�nite period of ination. For ination to end, another sector of the theory must be

invoked, generally a coupling to a second scalar �eld  , so that �END and �CMB cannot

be �xed outside the context of a particular model. A generic characteristic, however, is

that �CMB � �END. For generality, we will take (�CMB=�) to be less than unity; in many

models it is often very much less than unity. In hybrid ination, the parameter �CMB is

positive, and can be written in terms of �CMB

�CMB

�CMB

=
2 (p� 1)

p

 
�CMB

�

!
�p "

1 +
p� 2

2 (p� 1)

 
�CMB

�

!p#

�!

8>>>><
>>>>:

p� 2
p for �CMB=�� 1

2 (p� 1)
p

�
�

�CMB

�p
for �CMB=�� 1

: (3.2)

This �rst expression depends only on the assumption of slow-roll, not on a small-�eld

limit. In the large-�eld limit, �CMB=� � 1, we recover the result for model A found

above, �CMB=�CMB = (p � 2)=p. In the small-�eld limit, �CMB=� � 1 , we obtain the

familiar result for hybrid models, n > 1.

This possibility of a \blue" scalar spectrum (here, blue implies n > 1) is the distinctive

feature of hybrid models. Recalling that n = 1 � 4� + 2�, we see that although hybrid

models can in principle result in a red spectrum (for � < 2�), if � > 2�, hybrid ination

predicts a blue spectrum.

The predictions for all of the models described here are summarized in Table 1.
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model
�2END
m2

P l

�2CMB

m2
P l

�CMB �CMB

A p2

16�
p(p+ 200)

16�
p

p+ 200
p� 2
p+ 200

B �2

m2
P l

�p
16�
p

�
�
mP l

��2=(p�1)
�2

m2
P l

"
4�

25p(p� 2)

 
�2

m2
P l

!#2=(p�2)
� j�CMBj � p� 1

50(p� 2)

C O

 
�2

m2
P l

!  
�2END
m2

P l

!
exp

�
� 25
2�

�
mP l
�

�2�
� j�CMBj � m2

P l

4��2

D undetermined undetermined
m2

P l

16��2
� m2

P l

16��2

E undetermined undetermined p�1 p�1

F undetermined undetermined < �CMB > 0

Table 1: Lowest-order results for �END, �CMB, �CMB, and �CMB in some popular ination
models.

IV. EXTRACTING PERTURBATION SPECTRA

INFORMATION FROM CMB OBSERVATIONS

Now that we know how to extract the observables n and r from a given inationary

potential, we turn to the question of how well experiments will be able to measure these

quantities. The general question of parameter estimation from CMB experiments will

likely occupy cosmologists for a long time. However, without any simulations at all, one

can get a very good idea of how accurately parameters will be determined by using a
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simple �2 technique. A given experiment will measure each Cl with an error given by

�Cl. The \true" set of parameters will be determined by minimizing

�2 (f�ig) �
1X
l=2

�
Cl (f�ig)� Cmeasured

l

�2
(�Cl)2

: (4.1)

Here the set of parameters fn; r; Qrms�PS;
B; H0g which we are allowing to vary is de-

noted f�ig.

Of course, we cannot know in advance what Cmeasured
l will turn out to be. But knowing

what we expect for �Cl, we can get an estimate of how large the uncertainties in the

parameters will be. To do this, we assume that the measured Cl's will be very close to

the true Cl's. Then, by minimizing the �2, we will accurately determine the parameters.

Therefore, we can expand

�2 (f�ig) ' �2
�n
�truei

o�
+

1

2

@2�2

@�i@�j

�����
�=�true

�
�i � �truei

� �
�j � �truej

�
: (4.2)

The second derivative matrix carries information about how quickly the �2 increases as

the parameters move away from their true values. Therefore, under some reasonable

assumptions [26], the uncertainties in the parameters are determined by this matrix.

We will be interested only in the parameters n and r, so we want to project these

uncertainties onto the two-dimensional n � r plane. (This is equivalent to integrating

out all the other variables.) It is a simple exercise to show that these uncertainties are

obtained by computing the elements of the �ve-by-�ve second derivative matrix, inverting

it, and then picking out the two-by-two matrix corresponding to the n; r elements. The

remaining two-by-two matrix de�nes the error ellipses in the n� r plane.

To complete this program, we need two more pieces of information. First, the elements

of the derivative matrix must be evaluated at the true values of the parameters. We need

to specify what we are assuming for the true values. Here, we look separately at two

possible sets of values for the parameters. The �rst corresponds to standard cold dark
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Fig. 1: The spectrum of anisotropies for the two models discussed in the text. Both are normalized
at large scales to COBE. The model with n = 0:9 is a much better �t to large scale structure data.

matter (sCDM).

n
�sCDM

o
=
n
n; r; Qrms�PS;
B; H0

o
=
n
1; 0; 18�K; 0:0125; 50

o
(4.3)

where H0 is in units of km sec�1 Mpc�1. The second set corresponds to values of the

parameters considered to be viable upon consideration of large scale structure data [27].

n
�LSS

o
=
n
n; r; Qrms�PS;
B; H0

o
=
n
0:9; 0:7; 18�K; 0:02; 50

o
(4.4)

The Cl's for these models are shown in Fig. 1. Since the anisotropies are considerably

larger in sCDM, the signal to noise in a given experiment will also be larger. Therefore

we expect tighter bounds in sCDM than in our second model.

The last piece of information we need to compute the derivative matrix in Eq. (4.2)

is the uncertainty expected in the Cl's. The relevant experimental parameters are: the
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beam width, �beam; the expected noise per pixel, �pixel; the area per pixel, 
pixel; and the

fraction of the sky covered. Once these are known, it is very useful to employ a formula

derived by Knox [7], who showed that for an all-sky map,

�Cl

Cl

=

s
2

2l + 1

 
1 +

�2pixel
pixel

Cl

expfl2�2beamg
!
: (4.5)

The �rst term here is the inevitable consequence of the fact that we have only 2l+1 pieces

of information at each l (cosmic variance). We will consider the MAP and PLANCK

satellites. For MAP, we assume �beam = 0:425 � 0:3� and �2pixel
pixel = (35�K)2(0:3�)2.

For PLANCK, we take �beam = 0:425� 0:17� and �2pixel
pixel = (3�K)2(0:167�)2.

The results are shown in Fig. 2. The ellipses delineate 95% con�dence limits in n and

r for the sCDM and LSS examples. In the sCDM case, we have imposed the (physical)

restriction that r > 0. Also shown in Fig. 2 are the predictions from the various models

discussed in Section III. By inverting Eqs. (2.13,2.14), we can plot the same ellipses in

the � � � plane. These are shown in Fig. 3. The superposition of the ellipses on top of

the model predictions makes clear that CMB observations will be able to discriminate

amongst inationary models.
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Fig. 2: Predictions for a variety of inationary models in the n � r plane superimposed on the
expected (95% C.L.) region allowed by the two CMB satellites. The two panels correspond to two
di�erent values of the true parameters: the upper �gure is the LSS model while the lower one is the
sCDM model. The line labelled �1 delineates two classes of models: Large (small) �eld models lie above
(below) the line.
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Fig. 3: Same as Fig. 2, but now the observational constraints have been mapped directly onto the
�� � plane.
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V. CONCLUSIONS

Di�erent inationary models make di�erent predictions for the spectrum of scalar

and tensor perturbations. While very di�erent models might lead to indistinguishable

scalar spectra, it has been realized for some time that the tensor spectrum, used in

conjunction with the scalar spectrum, can di�erentiate between models [28]. Here we

have demonstrated how the e�ect of scalar and tensor combinations on CMB uctuations

can be used as a discriminant in testing ination models.

Most inationary models have an adjustable parameter that can be tuned to give the

correct normalization of the scalar perturbations (Qrms�PS in the language used to study

CMB uctuations). A simple example of such a parameter is the coupling constant

� in the chaotic ination model with potential V (�) = ��4. However, in this paper

we have shown that even with the freedom of an adjustable parameter it is possible

that observations of the cosmic microwave background can distinguish among di�erent

ination models. Therefore, we can hope in the next decade to see a real confrontation

between ination models and CMB observations.

While the type of analysis we propose can never \prove" that any particular model

is correct, it might do much more than simply eliminate models. It is possible that

an analysis like the one we present here might be able to give some guidance in model

building. One way of dividing inationary models is to classify them as either \small-

�eld" models, \large-�eld" models, or \hybrid" models.3 Di�erent versions of the three

types of models predict qualitatively di�erent scalar and tensor spectra, so it should be

particularly easy to tell them apart once the data is available.

Although we have only studied simple examples of models, we can speculate that

small-�eld, large-�eld, and hybrid models will populate di�erent regions of the n{r plane

3A more exact division would be according to the second derivative of the potential near �CMB:
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Fig. 4: Regions in the n{r plane populated by the three types of models considered in this paper.

as illustrated in Fig. 4. Certainly a scalar spectral index larger than unity would sug-

gest some form of hybrid model. A scalar index smaller than one in combination with

negligible tensor contribution (small r) would suggest a small-�eld model, while scalar

index less than unity with considerable tensor contribution would point toward large-�eld

models.

An interesting question we do not address here is whether single-�eld, slow-roll models

populate the entire n{r plane.
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